Modeling Fuzzy Classiication Systems with Compact Rule Base

نویسندگان

  • Giovanna Castellano
  • Anna Maria Fanelli
چکیده

An adaptive method to construct compact fuzzy systems for solving pattern classiication problems is presented. The method consists of two phases: a rule identiication phase and a rule selection phase. The rule identiication phase generates fuzzy rules from numerical data through a simple fuzzy grid method, then tunes the resulting fuzzy rules by training a neuro-fuzzy network used to model the fuzzy classiier. The rule selection phase simpliies the fuzzy classiier by iteratively removing rules in the trained neuro-fuzzy network and adjusting the remaining rules so that the input-output behavior of the neuro-fuzzy network remains approximately unchanged. The performance of the proposed method both for training and test data is examined by computer simulations on the Iris data classiication problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES

Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only  considers both accuracy and generalization criteria in a single objective fu...

متن کامل

Rule Base and Inference System Cooperative Learning of Mamdani Fuzzy Systems with Multiobjective Genetic Algorithms

In this paper, we present an evolutionary multiobjective learning model achieving positive synergy between the Inference System and the Rule Base in order to obtain simpler, more compact and still accurate linguistic fuzzy models by learning fuzzy inference operators together with Rule Base. The Multiobjective Evolutionary Algorithm proposed generates a set of Fuzzy Rule Based Systems with diff...

متن کامل

Securing Interpretability of Fuzzy Models for Modeling Nonlinear Mimo Systems Using a Hybrid of Evolutionary Algorithms

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of nonlinear system identification, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, securing low-level and high-level int...

متن کامل

Identification of evolving fuzzy rule-based models

An approach to identification of evolving fuzzy rule-based (eR) models is proposed in this paper. eR models implement a method for the noniterative update of both the rule-base structure and parameters by incremental unsupervised learning. The rule-base evolves by adding more informative rules than those that previously formed the model. In addition, existing rules can be replaced with new rule...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999